Increased Titin Compliance Reduced Length-Dependent Contraction and Slowed Cross-Bridge Kinetics in Skinned Myocardial Strips from Rbm20ΔRRM Mice
نویسندگان
چکیده
Titin is a giant protein spanning from the Z-disk to the M-band of the cardiac sarcomere. In the I-band titin acts as a molecular spring, contributing to passive mechanical characteristics of the myocardium throughout a heartbeat. RNA Binding Motif Protein 20 (RBM20) is required for normal titin splicing, and its absence or altered function leads to greater expression of a very large, more compliant N2BA titin isoform in Rbm20 homozygous mice (Rbm20 (ΔRRM) ) compared to wild-type mice (WT) that almost exclusively express the stiffer N2B titin isoform. Prior studies using Rbm20 (ΔRRM) animals have shown that increased titin compliance compromises muscle ultrastructure and attenuates the Frank-Starling relationship. Although previous computational simulations of muscle contraction suggested that increasing compliance of the sarcomere slows the rate of tension development and prolongs cross-bridge attachment, none of the reported effects of Rbm20 (ΔRRM) on myocardial function have been attributed to changes in cross-bridge cycling kinetics. To test the relationship between increased sarcomere compliance and cross-bridge kinetics, we used stochastic length-perturbation analysis in Ca(2+)-activated, skinned papillary muscle strips from Rbm20 (ΔRRM) and WT mice. We found increasing titin compliance depressed maximal tension, decreased Ca(2+)-sensitivity of the tension-pCa relationship, and slowed myosin detachment rate in myocardium from Rbm20 (ΔRRM) vs. WT mice. As sarcomere length increased from 1.9 to 2.2 μm, length-dependent activation of contraction was eliminated in the Rbm20 (ΔRRM) myocardium, even though myosin MgADP release rate decreased ~20% to prolong strong cross-bridge binding at longer sarcomere length. These data suggest that increasing N2BA expression may alter cardiac performance in a length-dependent manner, showing greater deficits in tension production and slower cross-bridge kinetics at longer sarcomere length. This study also supports the idea that passive mechanical characteristics of the myocardium influence ensemble cross-bridge behavior and maintenance of tension generation throughout the sarcomere.
منابع مشابه
Impact of titin isoform on length dependent activation and cross-bridge cycling kinetics in rat skeletal muscle.
The magnitude of length dependent activation in striated muscle has been shown to vary with titin isoform. Recently, a rat that harbors a homozygous autosomal mutation (HM) causing preferential expression of a longer, giant titin isoform was discovered (Greaser et al. 2005). Here, we investigated the impact of titin isoform on myofilament force development and cross-bridge cycling kinetics as f...
متن کاملMyocardial cross-bridge kinetics in transition to failure in Dahl salt-sensitive rats.
The role of altered cross-bridge kinetics during the transition from cardiac hypertrophy to failure is poorly defined. We examined this in Dahl salt-sensitive (DS) rats, which develop hypertrophy and failure when fed a high-salt diet (HS). DS rats fed a low-salt diet were controls. Serial echocardiography disclosed compensated hypertrophy at 6 wk of HS, followed by progressive dilatation and im...
متن کاملDeletion of the titin N2B region accelerates myofibrillar force development but does not alter relaxation kinetics.
Cardiac titin is the main determinant of sarcomere stiffness during diastolic relaxation. To explore whether titin stiffness affects the kinetics of cardiac myofibrillar contraction and relaxation, we used subcellular myofibrils from the left ventricles of homozygous and heterozygous N2B-knockout mice which express truncated cardiac titins lacking the unique elastic N2B region. Compared with my...
متن کاملMyosin MgADP release rate decreases at longer sarcomere length to prolong myosin attachment time in skinned rat myocardium.
Cardiac contractility increases as sarcomere length increases, suggesting that intrinsic molecular mechanisms underlie the Frank-Starling relationship to confer increased cardiac output with greater ventricular filling. The capacity of myosin to bind with actin and generate force in a muscle cell is Ca(2+) regulated by thin-filament proteins and spatially regulated by sarcomere length as thick-...
متن کاملExpression of cardiac troponin T with COOH-terminal truncation accelerates cross-bridge interaction kinetics in mouse myocardium.
Transgenic mice expressing an allele of cardiac troponin T (cTnT) with a COOH-terminal truncation (cTnT(trunc)) exhibit severe diastolic and mild systolic dysfunction. We tested the hypothesis that contractile dysfunction in myocardium expressing low levels of cTnT(trunc) (i.e., <5%) is due to slowed cross-bridge kinetics and reduced thin filament activation as a consequence of reduced cross-br...
متن کامل